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Saturday 14th May 

 
Registration opens 

 

 
8:00 Register by 8:40 am to receive COVID test in time for start of meeting 

Welcome and overview 
 

 
9:00 Welcome CAGI Organizers  

Missense challenge: HMBS 
 

 
9:45 Session chair Yana Bromberg  
9:50 Data provider Roth group  

10:05 Assessor Grishin group  
10:25 Predictor Yun Song  
10:35 Predictor Alexey Strokach  
10:45 Discussion 

 

  
Coffee break 

 

Missense cancer challenges: MAPK1, MAPK3 
 

 11:25 Data provider Valerio Consalvi  
11:40 Assessor Emidio Capriotti  
11:55 Predictor Fabrizio Pucci  
12:05 Predictor Emil Alexov  
12:15 Discussion 

 

  
Lunch 

 

Missense challenge: Calmodulin 
 

 
13:25 Session chair Yana Bromberg  
13:30 Data provider Giuditta Dal Cortivo  
13:45 Assessor Emidio Capriotti  
14:00 Predictor Carlos Rodrigues  
14:10 Predictor Yang Shen  
14:20 Discussion 

 

Abstract talks - part 1 
 

 
14:30 Gabriel Cia, Giulia Babbi, Nurdan Kuru, Céline Marquet   

Tea break 
 

Abstract talks - part 2 
 

 
15:40 Muttaqi Alladin, Shen group, Milind Jagota 

Discussion of missense prediction methods and challenges 
 

 
16:05 Discussion All attendees 

CAGI data for benchmarks discussion 
 

 
16:35 Discussion All attendees   

Cocktail reception 
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Sunday 15th May 
Registration opens 

 

 
8:00 

  

Welcome 
   

 
9:00 Welcome CAGI Organizers 

Polygenic Risk Score challenge 
 

 
9:15 Session chair 

 

 
9:20 Data provider & assessor Sung Chun, Shamil Sunyaev  
9:50 Predictor Doug Speed  

10:00 Predictor Zhao group  
10:10 Discussion 

 

  
Coffee break 

 

Clinical challenge: SickKids 
 

 
11:20 Session chair Alex Colavin  
11:25 Data provider & assessor Kyoko Yuki, Huayun Hu  
11:55 Predictor Kyoungyeul Lee  
12:05 Predictor Vicente Yepez  
12:15 Discussion 

 

  
Lunch 

 

Clinical challenge: Rare Genomes Project 
 

 
13:25 Data provider & assessor Sarah Stenton, Anne O'Donnell-Luria  
13:55 Predictor Panos Katsonis  
14:05 Predictor Susanna Zucca, Ivan Limongelli  
14:15 Predictor Jules Jacobsen  
14:25 Discussion 

 

The CAGI Ethics Forum 
 

 
14:35 Ethics Forum leader Malia Fullerton  
15:05 Discussion 

 

  
Tea break 

 

CAGI & clinical recommendations 
 

 
16:00 Introduction Steven Brenner  
16:10 Evidence-based calibration of 

computational tools for the clinical 
classification of missense variants 

Vikas Pejaver 

 
16:35 Review of the first decade of CAGI Pedja Radivojac   
17:00 Discussion 

 

CAGI6 feedback, leads and ideas for CAGI 7 
 

 
17:10 Discussion All participants 

Assessor office hour (HMBS, PRS, RGP) 
 

 
17:30 
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Monday 16th May 

 
Registration opens 

 

 
8:00 

  

Welcome 
   

 
9:00 Welcome CAGI Organizers 

Clinical challenges: ID panel 
 

 
9:10 Session chair 

 

 
9:15 Data provider & assessor Emanuela Leonardi  
9:45 Predictor Raj Srinivasan  
9:55 Predictor Yexian Zhang  

10:05 Discussion 
 

  
Coffee break 

 

Splicing challenge 
  

 
10:45 Data provider & assessor Carolina Jaramillo Oquendo,  

Diana Baralle  
11:15 Predictor Raphael Leman  
11:25 Predictor Yaqiong Wang  
11:35 Predictor Steve Mount  
11:45 Discussion 

 

Abstract talks - part 3 
 

 
12:00 Brynja Matthíasardóttir, Yixuan Ye, Azza Althagafi, Chi Zhang   

Lunch 
 

Keynote lecture 
  

 
13:30 Deep learning oracles for genomic 

discovery 
Anshul Kundaje 

Clinical challenge: Sherloc 
 

 
14:20 Data provider & assessor Rachel Hovde, Peter Combs  
14:50 Predictor Ken Chen  
15:00 Predictor Joe Wu  
15:10 Discussion 

 

Discussion of clinical prediction methods and challenges 
 

 
15:20 

 
All attendees 

Closing remarks 
  

 
15:50 CAGI organizers 
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Conference venue 
 
The CAGI 6 conference will be held in the Goldman Auditorium at the David Brower Center. The 

address of the conference venue can be found below. All scheduled conference events will take 

place at the conference venue. 

 

Goldman Auditorium 

David Brower Center 

2159 Allston Way, 

Berkeley, CA 94704 

 

Contact information 
CAGI 6 conference organizers: 

 

Tina Bakolitsa 

Email: bakolitsa@berkeley.edu 

Phone: 510-990-1813 

 

Wireless Internet 
 

To access Wi-Fi in the Brower Center, join the "DBC Public" network. No password is required. 

 

Due to data from human research participants and unpublished results, all CAGI materials are 

governed by the CAGI Data Use Policy. Tweeting and similar dissemination is encouraged only 

when explicitly permitted by presenters. The CAGI6 hashtag is #CAGI6. 

  

mailto:bakolitsa@berkeley.edu
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Code of Conduct and CAGI DUA 
 

CAGI maintains a simple list of core principles that provides the foundation for strong communities 

of scientists. 

Code of Conduct: CAGI follows the ISMB code of conduct https://www.iscb.org/codeofconduct 

CAGI Data Use Agreement: Essential information about how you can use CAGI data. Please 

read carefully because it might contain data restrictions that you did not expect. 

CAGI aims to advance phenotypic interpretation of genomic variation. The CAGI experiments 

depend on the interrogation of data from people whose information has been collected as part of 

clinical care, following participation in a research project or biorepository, or from healthy 

volunteers. Some of these data -incorporating both genotypes and phenotypes- are highly 

sensitive and personal, and therefore must be handled with the utmost respect, integrity, and care 

including being maintained with the highest standards of data security and confidentiality. The 

success of CAGI also hinges critically on the generous contribution of pre-publication datasets and 

the participation of predictors and assessors. Many datasets affect individuals' careers. 

To protect unpublished and sensitive data that have been shared with CAGI, and as a condition of 

participation in CAGI, CAGI participants must agree to the following dataset dissemination rules. 

We define CAGI "participants" as those who have any role in the CAGI experiment including 

predictors, assessors, data set providers, organizers and advisors. 

• All datasets (including genotypes and phenotypes) are confidential until released by the 

dataset provider. Release may take the form of (a) datasets that are posted on the CAGI 

website and explicitly labeled as open public access, (b) explicit written permission from 

dataset provider to use the data for a limited set of applications, and/or (c) publication of 

the full contents of the dataset for unrestricted public use (publication of partial or restricted 

datasets constitutes release of only that partial or access-restricted dataset). 

• CAGI participants agree not to share unreleased datasets with anyone except other 

registered and approved predictors who have agreed to these terms. 

• CAGI participants agree to be responsible for maintaining the privacy and security of 

unreleased datasets, which they obtained from CAGI. As one example, CAGI participants 

must keep the files on secure systems and may not submit confidential data for predictions 

on third-party webservers. 

• CAGI participants agree not to use an unreleased dataset for any other purposes than 

those described in the CAGI challenge for the dataset. 

• CAGI participants agree not to use unreleased datasets for any commercial purpose. 

• CAGI participants agree not to use any unreleased datasets in any publication, for example 

as a test case (even if the identity of the data is not disclosed) or for reporting a discovery 

that the CAGI participant might have made when analyzing the data. 

• Following dataset release, CAGI participants may use the data with the same freedom and 

constraints as others who obtained the data without participation in CAGI via public 

mechanisms. Even after release, dataset use may be constrained (e.g., due to privacy 

issues) and participation in CAGI does not release CAGI participants from those 

constraints.  

• Any requests for early release of dataset contents for a specific purpose must be submitted 

via the CAGI organizers, rather than directly to the dataset provider. 

https://www.iscb.org/codeofconduct
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• In order to register for the CAGI dataset access, you must read, understand, and agree to 

these data use rules. If you agree to these rules, please register by providing your initials. 

 

Dissemination of Slides Policy: CAGI follows the guidelines indicated below for disseminating 

slides of the CAGI conference. 

• CAGI participants may use or publish any content of these slides only in compliance with 

the CAGI Data Use Agreement 

• CAGI participants may not cite or publish any content of these slides except with the 

written permission of the originating author or in the primary CAGI publications 

• CAGI participants must acknowledge the original authors of these slides and CAGI 6.  

Include the acknowledgement banner across the bottom 

• CAGI participants must include the CAGI credits slide in their presentations 

• Slides with a red slash (no remix) may not be included in a presentation unless all 

attendees are registered CAGI participants who signed the data use agreement 

• Slides with a red X over the entire slide may not be used in any circumstances 

• Slides with a blue slash (embargoed) may not be used unless the embargo is explicitly 

lifted 

• Slides without slash or X may be tweeted unless flagged with the “No tweet” icon. 

• CAGI participants using these slides must explain the “No tweet” icon, which means that 

the slide content should not be disseminated outside the presenting conference hall.  If the 

presentation venue permits pervasive tweeting, you may not include these slides in your 

talk 

• Note for slide authors: we expect all CAGI participants to abide by these restrictions, and 

will make best effort to ensure they are followed.  However, but bear in mind that we have 

limited means of enforcing them, and therefore the restrictions cannot be guaranteed.  



 7 
 
 
 

CAGI 6 Meeting Participants 
(in-person) 

 
Gaia Andreoletti 
 Astellas Gene Therapies, South San Francisco, CA 
Constantina Bakolitsa 
 University of California, Berkeley, Berkeley, CA 
Gabriel Beriain 

Université Libre de Bruxelles, Brussels, Belgium 
Steven Brenner 
 University of California, Berkeley, Berkeley, CA 
Yana Bromberg 
 Rutgers University, New Brunswick, NJ 
Lawrence Carr 
 Patient advocate 
Sung Chun 
 Harvard Medical School, Boston, MA 
Pieter Jan Coenen 
 Invitae, Leuven, Belgium  
Alexandre Colavin 
 Invitae, San Francisco, CA 
Peter Combs 
 Invitae, San Francisco, CA 
Qiang Cong 
 UT Southwestern Medical Center, Dallas, TX 
Malia Fullerton 
 University of Washington, Seattle, WA 
Reece Hart 
 MyOme Inc, Palo Alto, CA 
Cindy Ho 
 University of California, Berkeley, Berkeley, CA 
Roger Hoskins 
 University of California, Berkeley, Berkeley, CA 
Rachel Hovde 
 Invitae, San Francisco, CA 
Zhiqiang Hu 
 University of California, Berkeley, Berkeley, CA 
Jules Jacobsen 
 Queen Mary University of London, London, UK 
Milind Jagota 
 University of California, Berkeley, Berkeley, CA 
Panagiotis Katsonis 
 Baylor College of Medicine, Houston, TX 
Cyrielle Kint 
 Invitae, Leuven, Belgium 
Anshul Kundaje 
 Stanford University, Stanford, CA 
Kyle (Kyoungyeul) Lee 
 3billion, Seoul, South Korea 
Ivan Limongelli 
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 EnGenome, Pavia, Italy 
Jennifer (Yu-Jen) Lin 
 University of California, Berkeley, Berkeley, CA 
Selena Martinez 
 Patient advocate 
M. Stephen Meyn 
 University of Wisconsin, Madison, WI 
Reet Mishra 
 University of Berkeley, Berkeley, CA 
Sean Mooney 
 University of Washington, Seattle, WA 
Steve Mount 
 University of Maryland, College Park, MD 
Anne O'Donnell-Luria 
 Broad Institute of MIT and Harvard, Cambridge, MA 
Fabrizio Pucci 

Université Libre de Bruxelles, Brussels, Belgium 
Predrag Radivojac 
 Northeastern University, Boston, MA 
Michael Snyder 
 Stanford University, Stanford, CA 
Yun Song 
 University of California, Berkeley, Berkeley, CA 
Sarah Stenton 
 Broad Institute of MIT and Harvard, Cambridge, MA 
Qidi (Lily) Sun 
 University of California, Berkeley, Berkeley, CA 
Shamil Sunyaev 
 Harvard Medical School, Boston, MA 
Amanda Williams 
 Baylor College of Medicine, Houston, TX 
Junwoo Woo 
 3billion, Seoul, South Korea 
Yixuan Ye 
 Yale University, New Haven, CT 
Chi Zhang 
 Yale University, New Haven, CT 
Jing Zhang 
 UT Southwestern Medical Center, Dallas, TX 
Susanna Zucca 
 EnGenome, Pavia, Italy 

  
  



 9 
 
 
 

CAGI 6 Meeting Participants 
(remote) 

 
Muttaqi Alladin 
 Indian Institute of Science, Bengaluru, India 
Azza Althagafi 
 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia 
Emil Alexov 
 Clemson University, Clemson, NC 
Maria Christina Aspromonte 
 University of Padova, Padova, Italy 
Giulia Babbi 
 University of Bologna, Bologna, Italy 
Diana Baralle 
 University of Southampton, Southampton, UK 
Roberta Chiaraluce 
 Sapienza University, Rome, Italy 
Valerio Consalvi 
 Sapienza University, Rome, Italy 
Emidio Capriotti 
 University of Bologna, Bologna, Italy 
Flavia Chen 
 Harvard Medical School, Boston, MA 
Ken Chen 
 Sun Yat-sen University, Guangzhou, China 
Giuditta Dal Cortivo 
 University of Verona, Verona, Italy 
Danielle Dell' Orco 
 University of Verona, Verona, Italy 
Piero Fariselli 
 University of Torino, Torino, Italy 
Huayun Hou 
 SickKids Genome Clinic, Toronto, Canada 
Tim Hubbard 
 King's College London, London, UK 
Nurdan Kuru 
 Sabanci University, Istanbul, Turkey 
Emanuela Leonardi 
 University of Padova, Padova, Italy 
Raphael Leman 
 Centre François Baclesse, Caen, France 
Olivier Lichtarge 
 Baylor College of Medicine, Houston, TX 
Chang Lu 
 MRC Laboratory of Molecular Biology, Cambridge, UK 
Céline Marquet 
 Technical University of Munich, Munich, Germany 
Brynja Matthíasardóttir 
 University of Maryland, College Park, MD 
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Christian Mertes 
 Technical University of Munich, Munich, Germany 
Carolina Jaramillo Oquendo 
 University of Southampton, Southampton, UK 
Shailesh Panday 
 Clemson University, Clemson, NC 
Vikas Pejaver 
 Ikahn School of Medicine at Mount Sinai, New York, NY 
Carlos Rodrigues 
 University of Melbourne, Melbourne, Australia 
Yang Shen 
 Texas A&M University, College Station, TX 
Damian Smedley 
 Queen Mary University of London, London, UK 
Douglas Speed 
 Aarhus University, Aarhus, Denmark 
Rajgopal Srinivasan 
 TATA Consultancy Services, Hyderabad, India 
Alexey Strokach 
 University of Toronto, Toronto, Canada Yuanfei Sun 
Uma Sunderam 
 TATA Consultancy Services, Chennai, India 
Wuwei Tan 
 Texas A&M University, College Station, TX 
Warren van Loggerenberg 
 University of Toronto, Toronto, Canada 
Yaqiong Wang 
 Fudan University, Shanghai, China 
Joe (Yingzhou) Wu 
 University of Toronto, Toronto, Canada 
Vicente Yepez 
 Technical University of Munich, Munich, Germany 
Rujie Yin 
 Texas A&M University, College Station, TX 
Kyoko Yuki 
 SickKids Genome Clinic, Toronto, Canada 
Geyu Zhou 
 Yale University, New Haven, CT 
Shaowen Zhu 
 Texas A&M University, College Station, TX 
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Predicting the effects of missense variations and the case of MTHFR     
deficiency 

Giulia Babbi1, Castrense Savojardo1, Samuele Bovo1,2, Davide Baldazzi1,3, Pier Luigi 

Martelli1* and Rita Casadio1,4 

 
1 Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, 40126 
Bologna, Italy; 
2 Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; 
3 Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, 
33081 Aviano, Italy. 
4 Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Italian National 
Research Council (CNR), 70126 Bari, Italy 
* Correspondence: pierluigi.martelli@unibo.it 
giulia.babbi3@unibo.it (G.B.); castrense.savojardo2@unibo.it (C.S.); samuele.bovo@unibo.it (S.B.); 
davide.baldazzi8@unibo.it (D.B.); rita.casadio@unibo.it (R.C.) 

 
Predicting the effect of variations on protein functional activity and disease associations 
is a strategic task of growing relevance – and evaluating these predictions is a goal of 
CAGI experiment itself. The Bologna Biocomputing Group provides resources and 
expertise for both curating databases and implementing tools to endow biological data 
with structural and functional annotations. Here we present some of our in-house 
computational tools and approaches that may help in solving this task, along with a 
specific case study on MTHFR deficiency that was part of the CAGI6 challenges. 
For understanding the possible effect of missense variations in protein-protein 
interactions or domain-domain interfaces, we adopt our machine-learning based 
DeepREX tool (http://deeprex.biocomp.unibo.it). When possible, we analyse variations at 
the structural level, in terms of the location of the residue with respect to the protein 
surface, and its distance from the active site and/or important functional motifs. 
We adopt a consensus method to investigate whether missense variations are related to 
protein instability. We use three state-of-the-art methods that predict the change of folding 
Gibbs free energy (∆ΔG) associated with a specific variation: our INPS/INPS-MD, based 
on machine- learning (https://inpsmd.biocomp.unibo.it), FoldX, based on statistical 
potentials, and PoPMuSiC2, based on statistical potentials and machine-learning. 
To classify missense variations leading to disease insurgence we computed their 
likelihood of being disease-related with SNPs&GO (https://snps-and-
go.biocomp.unibo.it). When the task is to select possible causative variations on more 
genes, we screened disease-related genes through our in-house resources eDGAR 
(http://edgar.biocomp.unibo.it) and PhenPath (http://phenpath.biocomp.unibo.it), both 
relying on NETGE-PLUS algorithm (http://net- ge2.biocomp.unibo.it) for enriching 
disease/phenotype set for functional annotations. 
As a study case, we present the analysis of 72 missense variations of human MTHFR 
protein (Methylenetetrahydrofolate reductase) known to be associated with the disease 
“MTHFR deficiency”. By estimating the thermodynamic ΔΔG change according to the 
proposed consensus method, we find that 61% of the disease-related variations 
destabilize the protein, are present both in the catalytic and regulatory domain and 
correspond to known biochemical deficiencies. The propensity of solvent-accessible 
residues to be involved in protein-protein interaction sites, as predicted with DeepREX, 
indicates that most of the interaction sites are located in the regulatory domain. We show 

mailto:pierluigi.martelli@unibo.it
mailto:giulia.babbi3@unibo.it
mailto:castrense.savojardo2@unibo.it
mailto:samuele.bovo@unibo.it
mailto:davide.baldazzi8@unibo.it
mailto:rita.casadio@unibo.it
http://net-/
http://net-/
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that patterns of disease-associated, physicochemical variation types, both in the catalytic 
and regulatory domains, are unique for the MTHFR deficiency when mapped into the 
protein architecture. 

Mutational Effect Prediction with Protein Language Modeling and Structural 

Information 

Yuanfei Sun, Yang Shen* 

Texas A&M University, College Station, TX 

77843 yshen@tamu.edu 

 
The workhorse molecules of life, proteins play a central role in cellular functions and are 

major drug targets. Their variations in humans and pathogens often lead to genetic 

diseases and therapeutic resistance. The ability to decipher the association between 

protein variations and resulting effects would facilitate disease prognostics and biologics 

design, e.g. antibodies. 

Although multiplexed assays of variant effects (MAVE), such as deep mutational scanning 

(DMS) and massively parallel reporter assay (MPRA) experiments, are generating data 

about variant effects ranging from protein stability to cell viability, their speed and 

applicability are dwarfed by the amount of variants and effects to characterize. Therefore, 

there is a critical need to develop high-throughput and accurate computational tools that 

can overcome the lack or the limitation of experimentally labeled variant data. 

 
Our algorithmic answer for such “zero-shot” or “few-shot” variant effect prediction lies in 

the protein language models (PLMs). Attributed to advancements in sequencing 

technology, there are abundant “unlabeled” data of functional sequences (sampled by 

nature through evolution) across species. These primary sequences of amino acids 

resemble texts in natural languages and their distributions have been effectively learned 

by various pretrained LMs. We pretrained our transformer-based PLMs using highly 

sparse domain sequences from Pfam Representative Proteomes set (at 15% and 75% 

levels), and finetuned them with UniRef100 homology domain sequences within the given 

family. Using the modeled ratio of likelihood between variant and wild-type sequences as 

zero-shot predictors, our unsupervised models without the use of labeled data showed 

comparable performance over benchmark datasets against both alignment-based and 

alignment-free state-of-the-art methods (average difference in rank correlation: 0.007 to 

DeepSequence, 0.017 to Shin’s autoregressive model). We also compared two 

mainstream approaches for likelihood factorizations: autoregression and denoising. We 

found that the autoregressive model showed an edge for mutations at terminal regions 

while the denoising model outperformed for middle-region mutations. We further 

examined the performances over different order of missense mutations spanning from 

single to 24-site on HIS7_Yeast. Our results showed evidence that PLMs are epistasis 

aware. In an experiment to anticipate spike-protein mutations in COVID, our PLMs 

correctly discovered all single mutations of the five WHO-defined Variants of Concern 

within top 5 predictions. Lastly, beyond modeling sequences only, we further embed 

mailto:yshen@tamu.edu
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structures as an extra modality information for PLMs through spatial message passing and 

multi-task learning. Our numerical results verify that the 

structure-aware sequence embeddings improve fitness prediction. 
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Assessment of the CAGI 6 HMBS challenge 
 
Jing Zhang 
UT Southwestern Medical Center, Dallas, TX 
 
We will present the evaluation of predictions for the HMBS challenge. In the challenge, the 
participants were asked to predict effects on yeast growth caused by missense variants of 
human hydroxymethylbilane synthase, a protein involved in the third step of heme 
biosynthesis. For the evaluation, the disparate distributions and scaling between 
predictions and experimental scores remain the critical hurdle for impartial assessment. 
The performance of predictors implementing different algorithms and methods is similar. 
The Kendall tau ranges from 0.1 to 0.3 for 8 out of 10 groups. Most predictors are able to 
identify the highly deleterious (experimental score less than 0.3) or benign (experimental 
score more than 0.8) variants with modest accuracy with highest AUC above 0.7 
respectively. However, for variants which slightly harm the growth of yeast with 
experimental growth score from 0.3 to 0.8, the performance of predictors is nearly random 
with maximum MCC less than 0.09. This pattern suggests that predictors work mostly like 
binary classifiers rather than predicting continuous scale scores. Furthermore, variants 
showing benefits on yeast growth are also poorly predicted. Meanwhile, the baseline 
predictor which is based purely on multiple sequence alignment outperforms most 
predictors with only three groups surpassing its performance. Nevertheless, the 
assessment scores of positive control and baseline predictor suggest substantial 
improvements in accuracy of predictions in the future should be possible, likely by 
methods not currently explored by predictors, which seem to be saturated at what they 
can achieve. 
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CalVEIR performance in the CAGI 6 HMBS challenge 
Milind Jagota 

 
 Deep learning models of protein sequences such as AlphaFold have enabled 
recent breakthroughs in molecular biology. There has been interest in developing such 
models for variant effect prediction of coding regions of the genome. Models such as 
DeepSequence, EVE, and ESM-1v have approached missense variant effect prediction in 
an unsupervised manner with success. We developed a method for variant effect 
prediction that expands on these and conventional methods and tested our method on the 
HMBS prediction challenge in CAGI6. Our method was one of the top performers and 
combined novel structural features of protein function together with existing variant effect 
predictors. We trained a supervised regression on data from proteins that are distant from 
the target, demonstrating successful transfer across proteins. Our success provides new 
insight into representations of protein function and robust approaches to supervised 
learning for variant effect prediction. 
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Exploring the fitness landscape through structural and evolutionary models 

by Fabrizio Pucci1,2, Gabriel Cia1,2, Marianne Rooman1,2,* 

 
1 Computational Biology and Bioinformatics, Université Libre de Bruxelles 
2 Interuniversity Institute of Bioinformatics in Brussels 

* Correspondence: marianne.rooman@ulb.be 
 
Despite the bioinformatics advances of the past decades, accurately predicting the impact 

of mutations on protein fitness remains a challenging goal. Indeed, the correlations 

between predicted and experimental protein fitness values are still quite limited, as was 

also found in the previous CAGI competition [1]. 

 
In the context of the current CAGI6 challenge, we present three different computational 

models that combine structural and coevolutionary information, which we applied to perform 

fitness predictions on the HBMS protein target: 

 
- Model 1: As stability is one of the key ingredients of protein fitness, we used a 

rescaled version of our in-house structure-based PoPMuSiC predictor [2] that 

estimates the impact of variants on protein thermodynamic stability using a 

simplified representation of protein structures and statistical potentials. 

 
- Model 2: This model uses a rescaled version of our deleteriousness prediction 

tool SNPMuSiC [3], which combines predictions based on protein structure and 

statistical potentials with the evolutionary score of the PROVEAN predictor [4]. 

 
- Model 3: In this last model, several prediction scores are combined through a 

simple linear regression model: the structure-based scores of PoPMuSiC [2] and 

MAESTRO [5], the residue solvent accessibility, and the (co)evolutionary scores 

such as PROVEAN [4] and EVCoupling [6]. 

 
We first applied these three models to the proteins CALM1, TPK, UBE2 and SUMO to 

identify the parameters of the models, and then blindly to HMBS. We conclude by 

comparing the experimental and predicted results and by discussing the advantages and 

limitations of the three approaches. 

 
[1] Andreoletti, Gaia, et al. Human mutation 40.9 (2019): 1197-1201. 

[2] Dehouck, Yves, et al. BMC Bioinformatics 12.1 (2011): 1-12 

[3] Ancien, François, et al. Scientific Reports 8.1 (2018): 1-11. 

[4] Choi, Yongwook, and Agnes P. Chan. Bioinformatics 31.16 (2015): 2745-2747. 

[5] Laimer, Josef, et al., BMC Bioinformatics 16.1 (2015): 1-13. 

[6] Hopf, Thomas A., et al. Bioinformatics 35.9 (2019): 1582-1584. 
 
  

mailto:marianne.rooman@ulb.be
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Assessing protein contribution to phenotypic change using short, coarse grain 
molecular dynamics simulations 

Muttaqi A. Alladin*, Debnath Pal 
Department of Computational and Data Sciences, Indian Institute of Science, Bengaluru 
560012, India. 
Muttaqi A. Alladin, Email: muttaqiahmad@iisc.ac.in 

Debnath Pal, Email dpal@iisc.ac.in 

Since the advent of high-throughput sequencing technologies, a large amount of data 
about proteins and protein variants has been generated, and interpreting the effect of 
these variants on the phenotype has been an enormous challenge. Although various 
methods exist that try to make a functional mapping between phenotype and genotype, 
many of these methods, like machine learning methods, are often computationally 
expensive to train and difficult to interpret. We use a relatively straightforward approach to 
create a functional mapping between the protein variants and the phenotype by using 
short, coarse grain molecular dynamics simulations. In our method, we carry out short 
coarse-grained molecular dynamics simulations (<10ns) for two different structures of the 
same protein. The two different structures could be where the same protein is in complex 
with different ligands/cofactors or where one structure is free, and the other structure is 
in complex with a ligand/cofactor. We have used this method in CAGI6 challenges for 
HMBS, MAPK1, and MAPK3 as targets. We have also used this method on Calmodulin. 
For MTHFR, SUMO1, and UBE2I, we explored getting a functional mapping between the 
phenotype and the variants using one single protein structure. As we are using a single 
structure instead of two, this method is not identical to the one used for CAGI6 Challenges 
or Calmodulin but is comparable as we are still using short coarse-grained molecular 
dynamics simulations to get a functional mapping. Although we don’t have the results of 
HMBS, MAPK1, and MAPK3 as the results of CAGI6 Challenges haven’t been publicly 
declared yet, this method has performed reasonably well on Calmodulin. For Calmodulin, 
we got a correlation of 0.6 with phenotype change for two-thirds of the data. Similarly, our 
functional mapping of MTHFR also yielded a correlation coefficient of 0.6 for over two-
thirds data. For SUMO1, we got a correlation coefficient of 0.7 for about 70% of the data, 
while UBE2I gave us a correlation coefficient of 0.6 for 60% data. We hope that our method 
will open new avenues to rationally improve genome interpretation. 

  

mailto:muttaqiahmad@iisc.ac.in
mailto:dpal@iisc.ac.in
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Impact of MAPK1/MAPK3 missense variants found in cancer: structural, function 
and stability experimental analysis 

Maria Petrosino1, Leonore Novak1, Alessandra Pasquo2, Emidio Capriotti3, Roberta 
Chiaraluce1, Valerio Consalvi*1 
 

1Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza University of Rome, 
Rome 

(Italy) 
2ENEA CR Frascati, Diagnostics and Metrology Laboratory FSN-TECFIS-DIM,Frascati 
(Italy) 

*valerio.consalvi@uniroma1.it 
3Department of Pharmacy and Biotechnology (FaBiT), University of Bologna. Bologna 
(Italy) 

 
MAPK1(ERK2) and MAPK3 (ERK1) are serine/threonine kinase in the Ras-Raf-MEK-
ERK signal transduction cascade that regulates cell proliferation, transcription, 
differentiation, and cell cycle progression. MAPK1 and MAPK3 are very similar in 
sequence (84%) and usually considered to be functionally redundant, although recent 
studies report evidence that they might play different roles. MAPK1/MAPK3 are activated 
by phosphorylation which occurs with strict specificity by MEK1/2 on Thr185/202 and 
Tyr187/204. Upon activation, MAPK1/MAPK3 translocate to the nucleus where they 
phosphorylate specific nuclear targets. Owing to their biological importance, they 
represent an important target of biomedical research and of a large part of drug discovery 
research. 
A library of eleven MAPK1 and thirteen MAPK3 missense variants selected from the 
COSMIC database were analyzed by near and far-UV circular dichroism and intrinsic 
fluorescence spectra to determine thermodynamic stability. These are somatic variants 
detected in cancer tissues and are distributed along the protein sequence. 
The thermodynamic stability was measured by monitoring the spectral changes (far-UV 
circular dichroism and intrinsic fluorescence emission) at increasing denaturant 
(guanidinium chloride) concentration. The variation of unfolding free energy (ΔG) is 

calculated by fitting the spectral changes at zero denaturant concentration (ΔGH2O). 

These data were used to calculate a ΔΔGH2O value, the difference in unfolding free 

energy ΔGH2O  between each variant and the wildtype protein, both in phosphorylated 
and unphosphorylated form. The catalytic efficiency (kcat/Km)mut/(kcat/Km)wt of 
phosphorylated MAPK1 and MAPK3 missense variants was determined by a 
fluorescence assay based on Chelation-Enhanced Fluorescence upon substrate peptide 
phosphorylation by the kinase. 
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Data provider from the “Sapienza” University in Rome Verona characterized the 
impact of missense variants in MAPK1 and MAPK3. The experimental studies on 11 and 

13 variants of MAPK1 and MAPK3 respectively, allowed to measure the free energy 

change ( Gh2o) and the enzymatic activity (kcat/KM) for the unphosphorylated and 

phosphorylated. The MAPK1/MAPK3 challenges were participated by 13 groups which 
submitted more than 40 predictions. To determine the effect of each mutant on protein 

stability and function, we calculated the variation of free energy change ( Gh2o) and 

the variation of enzymatic activity ( kcat/KM). Comparing the prediction with experimental 

values of the Gh2o for MAPK3 we found that the best method from Team3 resulted in 
a Pearson Correlation Coefficient (PCC) of 0.64 and a Root-Mean-Square- Error (RMSE) 
of 1.9 kcal/mol for the unphosphorylated form, while a method from Team4 reached a PCC 
of 0.68 and a RMSE of 1.2 kcal/mol for the phosphorylated form. For the prediction of the 
variation of activity of MAPK3 prediction from Team5 achieved and overall accuracy (Q2) 
of 0.75 Matthews Correlation Coefficient 0.378 an Area Under the Receiver Operating 
Characteristic Curve of 0.80. More complex is the analysis of variants in MAPK1 for which 
a folding mechanism changes. Our analysis shows that Team 4 reached good 

performance for the Unphosphorylated form of MAPK1 while a method from Team2 

predicts with good performance the ( kcat/KM). Overall for the predictions for MAPK3 
variants are more accurate than those achieved for the MAPK1 challenge. 
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A series of missense variants in mitogen-activated protein kinase (MAPK) of types 1 and 

3, selected from the COSMIC database of somatic cancer mutations, were proposed as 

CAGI6 challenges. The goal was to predict the changes in stability and catalytic efficiency 

of both the unphosphorylated and phosphorylated forms of the proteins. For this purpose, 

we used the different X-ray structures available for these proteins in the Protein Data Bank, 

and modeled the phosphorylated forms by replacing the phosphorylated residues by 

negatively charged amino acids1. 

 
To predict the stability changes, we applied several models which exploit the 3D structure 

of the target protein: (1) our in-house predictor of folding free energy changes upon 

mutations (∆∆G), called PoPMuSiC2, which uses several statistical potentials as input 

features of an artificial neural network; (2) an unbiased version of PoPMuSiC3 ensuring 

that the ∆∆G value of every mutation is equal to minus the ∆∆G value of the reverse 

mutation; and (3) an average of PoPMuSiC and another ∆∆G predictor, MAESTRO4. 

 
To predict the change in catalytic efficiency of the variants, we used two rescaled versions 

of the PoPMuSiC ∆∆G predictor. As a third model, we developed a fitness predictor based 

on a linear regression model integrating four evolutionary features (sequence variation and 

covariation) and four structure-based features (PoPMuSiC, MAESTRO, SNPMuSiC5, 

solvent accessibility), of which we identified the coefficients on the basis of experimental 

fitness values. 

 
[1] Pearlman et al. (2011). Cell 147(4), 934-946. 

[2] Dehouck Y et al. (2009). Bioinformatics, 25(19), 2537-2543. 

[3] Pucci F et al. (2018). Bioinformatics, 34(21), 3659-3665. 

[4] Laimer J et al. (2015). BMC bioinformatics, 16(1), 1-13. 

[5] Ancien F et al. (2018). Scientific reports, 8(1), 1-11. 
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Reliably estimating the change in thermal stability of proteins upon mutation is an 

important objective for the rational optimization of enzymes, especially in bioprocesses 

requiring unusual temperature conditions. We have recently developed a tool that predicts 

the change in melting temperature ∆Tm upon point mutations, which uses as input the 

wild-type protein structure and, when available, the wild-type melting temperature Tm. Our 

model, called HotMuSiC [1], relies on a combination of standard and temperature-

dependent statistical potentials which were used as input features to train a neural 

network. The model was trained on a dataset of over 1,600 manually curated mutations 

with experimentally measured ∆Tm. It achieves a correlation of 0.61 and a root mean 

square deviation of 4.2 °C between the predicted and experimental ∆Tm in 

5-fold cross validation, which increases to 0.75 and 2.9 °C when ignoring the top 10% 
outliers. 

 
To apply our HotMuSiC predictor to the calmodulin challenge, we used a modeled 3D 

structure for the apo form and an experimental structure for the holo form. Since the apo 

form follows a classical two-state folding transition, we simply applied our model to predict 

the changes in melting temperature, ∆Tm, of the variants. For the holo form, which follows 

a three-state transition, we predicted separately the ∆Tm of mutations situated in the C- 

and N-terminal domains; this means that we assumed that the melting temperature of the 

non-mutated domain remains unchanged. Furthermore, to predict the percentage of 

unfolding of each variant, we combined the predicted change in Tm with an experimentally 

determined enthalpy value ∆Hm and used a purposefully derived function relating these 

values with the percentage of unfolding. Finally, to predict the destabilization score of the 

variant, we simply calculated the change in the percentage of unfolding between the wild-

type and the variant. 

 
[1] Pucci, Fabrizio, et al. Scientific reports 6.1 (2016): 1-9. 
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On-going technological advances have led to dramatic increases in the amounts of 
biological data being generated over the years. Along with the evolution of high 
performance computing and computational tools, this has provided us with a wealth of 
information, analytical power and the opportunity to investigate fundamental health and 
biotechnological problems of different magnitude and kind, complementary to and able 
to guide conventional approaches. 

 
Our group is interested in developing and experimentally validating novel computational 
methods to exploit this data, enhancing the impact of genome sequencing, structural 
genomics, and functional genomics on biology and medicine. One of our main areas of 
interest is in the development of predictive and analytical tools and databases to 
investigate and understand the relationship between protein sequence, structure and 
function and phenotype. These methods allow us to gain unique insights into the 
molecular basis of genetic diseases, as well as a better understanding of the molecular 
mechanisms behind drug resistance, which has direct implications into guiding 
personalised patient treatment, the development of resistance resistant drugs, and to aid 
the design of novel drugs. 

 
For the Calmodulin Challenge in CAGI6, our team has submitted 6 different predictions 
for each missense mutation. These are derived from our well established suite of methods 
(mCSM, DUET, ENCoM, SDM, DynaMut and DynaMut2), which leverage 
physicochemical properties and distance pattern signatures extracted from protein 
structure data. Our tools are freely available to the scientific community and have been 
widely used in industry and academia all over the world with over 1 million hits/year. 

 
Here we considered the APO structure of CaM as entry 1DMO on the Protein Data Bank, 
and entry 1CLL as the protein under Ca2+-saturating conditions. Each mutation and 
PDB structure were then input into our webservers and results were compiled 
accordingly. Our methods predict the effects of mutations in terms of changes in the Gibbs 
Free Energy of folding (ΔΔG), which were then used as a direct measure of melting 
temperature values requested for this challenge. As one of the selected best-performing 
predictors for this challenge we look forward to the opportunity to present our findings 
and overall methodology used for our submissions. 
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During the last few years, the BioFolD unit developed several tools for predicting 
the impact of genetic variants at protein and nucleotide levels. The implemented methods 
are characterized by the types and number of features used for detecting pathogenic 
variants and predicting the variation of protein stability. The tools for predicting pathogenic 
variants include PhD-SNP (Capriotti, et al., 2006), which is a support vector machine 
based approach based on sequence information extracted from the protein sequence 
profile, SNPs&GO (Capriotti, et al., 2013b) which relies on functional information encoded 
by Gene Ontology terms and, when available, protein structure features and Meta-SNP 
(Capriotti, et al., 2013a) a meta prediction tool combining 4 well-establish methods. More 
recently, PhD-SNPg (Capriotti and Fariselli, 2017) uses the information retrieved on the 
UCSC genome browser to predict the impact of variants in noncoding regions and DDGun 
(Montanucci, et al., 2022) which predicts the variation of protein stability upon mutation. 
During the last edition of the CAGI, we participated in five challenges using modified 
version of our methods to predict the functional effect of variants on hydroxymethylbilane 
synthase (HMBS), Serine/Threonine Kinase (STK11), methylenetetrahydrofolate 
reductase (MTHFR) and their clinical impact (Splicing VUS, Sherloc clinical 
classification). All the tools used for the CAGI challenges are available at 
https://biofold.org. 
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With the advancement in high throughput sequencing technologies, our ability to detect 

genetic variation and predict the effect of a variant in clinical diagnosis has been 

revolutionized. 

Understanding the effect of these missense mutations is critical for diagnosing rare 

diseases. Here, we propose a novel phylogeny-dependent probabilistic approach to 

predict the functional effects of missense mutations. Our approach exploits independent 

evolutionary events and phylogenetic relationships among species to measure the 

deleteriousness of a given variant. 

We estimate the probability of observing any amino acid at the queried position of the 

protein in question by traveling through the phylogenetic tree. This process helps us 

analyze substitutions within the context of the phylogenic relations, and we use this 

information to assess substitutions’ effects over the queried sequence. We assess the 

predictive performance of our approach (PHACT) on various subsets of a dataset, which 

contains 3023 proteins and 61662 variants obtained from Clinvar, Humsavar, and 

Gnomad. The experiments demonstrate that our method outperforms widely used 

pathogenicity prediction tools (i.e., SIFT and PolyPhen-2) and achieves similar or better 

predictive performance compared to existing conventional statistical approaches 

presented in dbNSFP (Figure 1). We now extend this approach to a machine learning-

based approach. We use PHACT scores with other phylogenetic tree-related features 

in a gradient-boosting tree-based classifier. Our preliminary results show that the model 

outperforms other machine-learning-based algorithms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: AUC comparison of PHACT against statistical pathogenicity 

prediction algorithms presented in dbNSFP 
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Progress in complex phenotype prediction: the CAGI6 PRS challenge 
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Complex traits, which include common genetic disorders, are highly polygenic with numerous 
alleles of small effects contributing to the genetic risk. A proportion of this risk can be predicted by 
statistical methods that rely on results of Genome-Wide Association Studies (GWAS). Currently, 
most popular methods leverage GWAS summary statistics in the form of Polygenic Risk Scores 
(PRS). PRS has potential clinical utility for risk surveillance, prevention and personalized 
medicine. The CAGI6 PRS challenge assessed the performance of PRS algorithms using data on 
four phenotypes (Type 2 Diabetes, Breast Cancer, Inflammatory Bowel Disease and Coronary 
Artery Disease) representing disease areas that could benefit from PRS because of the availability 
of screening or early intervention options. We also assessed algorithms on a range of simulated 
data to get insight into the way algorithms perform in various parametric regimes. The accuracy of 
submitted algorithms was compared against a set of published baseline methods. The 
assessment revealed that one method outperformed state-of-the-art PRS algorithms in IBD 
(Nagelkerke’s R2=0.173 compared to 0.157) and across wide ranges of parameter values 
in simulated genetic architecture, highlighting that the current linear prediction models can be 
further improved. Algorithms that leverage functional annotations of genetic variants 
underperformed in comparison. Also, machine learning-based prediction models did not perform 
well. While this may be due to the paucity of non-linear genetic effects in complex traits, the 
current challenge was not structured to evaluate the full potential of these approaches. Due to 
privacy issues, it was not possible to openly share the full training data, and only a limited set of 
clinical covariates were available to use in prediction. Another limitation involved restricting this 
challenge to European ancestry individuals. Despite these limitations we hope to address in future 
challenges, we find the current PRS challenge valuable to assess the current state of the 
field. Despite these limitations which we hope to address in future challenges, we find the current 
PRS challenge valuable to assess the current state of the field.  
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MegaPRS Prediction of Complex Traits 
 
Douglas Speed 
Aarhus University, Aarhus, Denmark 
 
I will explain MegaPRS, my tool for constructing polygenic risk scores (PRS) from 
summary statistics. MegaPRS improves upon existing PRS tools by allowing the user to 
specify the heritability model (how heritability is expected to be distributed across the 
genome). When applied to UK Biobank data, MegaPRS out-performs existing tools (e.g, 
SBLUP, lassosum, LDpred and SBayesR) for 223 out of 225 phenotypes. The average 
improvement in accuracy is 14% (SD 1), equivalent to increasing the sample size by a 
quarter. Furthermore, MegaPRS is computationally efficient, taking less than an hour to 
construct genome-wide PRS. MegaPRS is freely available within the software package 
LDAK (www.ldak.org). 

http://www.ldak.org/
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Polygenic risk score (PRS) has great promise for disease prevention, monitoring, and 

treatment. We participated in the CAGI6-PRS challenge with two PRS methods developed 

by our group: Annopred and SDPR and compared with several other state-of-the-art PRS 

methods (P+T, LDpred, and PRS-CS). More specifically, Annopred is a robust Bayesian 

framework that leverages diverse types of genomic and epigenomic functional 

annotations in genetic risk prediction, whereas SDPR is an efficient PRS method that 

does not rely on parametric assumptions of the effect size distributions nor validation 

datasets for parameter tuning. 

 
For Annopred, we generated 88 candidate PRSs for each disease (CAD, BC, T2D, and 

IBD) under different tuning parameters. In particular, we estimated the effect sizes of all 

candidate SNPs using external GWAS summary statistics and computed PRS for all 

individuals in the UKBB training dataset. For each disease, the optimal tuning parameters 

were selected and the PRS model built using the “optimal” tuning parameter(s) was then 

evaluated and compared in the testing dataset. As parameter tuning is also required for 

P+T and LDpred, we followed the same procedure to evaluate their prediction 

performance. For SDPR, we generated one candidate PRS for each simulation and real 

dataset using provided summary statistics as input. We did not use the provided validation 

dataset since SDPR does not require parameter tuning. 

 
Taken together, our results suggest that both AnnoPred and SDPR can significantly 

increase the accuracy of polygenic risk prediction and risk population stratification 

compared to the other state-of-the-art methods. Please refer to other abstracts of our 

group for an expanded discussion about Annopred, SDPR, and xPred—a novel method 

that improves cross-population prediction of PRS. 
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Previous genome-wide association studies (GWAS) have revealed 38 susceptibility loci 

for Alzheimer's disease.And the Polygenic Risk Scores (PRS) have been widely created 

in multiple earlier studies to discriminate patients with AD from cognitively normal 

individuals AD GWAS data from the International Genomics of Alzheimer's Project 

(IGAP). Because several advanced PRS approaches have been developed in recent 

years, purpose of this study is to examine different PRS methodologies and to develop a 

robust PRS for AD. We investigated four PRS approaches (P+T, LDpred, PRScs, and 

AnnoPred) using results from two separate GWASs (IGAP GWAS: 21,982 cases and 

41,944 controls; meta GWAS: 71,880 cases and 383,378 controls). We found that 

AnnoPred consistently increased prediction accuracy (AUC 0.675 using IGAP GWAS; 

AUC 0.696 using meta GWAS). Furthermore, as there is evidence for sex differences in 

AD symptomatology, progression, biomarkers, risk factor profiles, and treatment we 

derived sex-specific PRSs using ADGC data. These sex-specific PRSs are based on 

various PRS models (PRScs, LDpred, AnnoPred, PRScsx, PleioPred and XPASS) to see 

if incorporating more information from the opposite sex could improve prediction 

performance. 

Overall, AnnoPred based on sex-agnostic GWAS data provided the best prediction 

accuracy. This suggests that when sample size is limited, the benefits of larger sample 

size exceed the benefits of sex-specificity where the sample sizes of the ADGC data we 

used to create sex- specific AD GWASs are 4207 for female and 5702 for male. 

However, sex-specific PRS for AD is still worth investigating when there are more sex-

specific GWAS results with larger sample sizes become available in the future. 
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The clinical use of polygenic risk scores (PRS) in non-European populations is hindered 
by the Eurocentric biases in genetic studies and the poor transferability of genetic results 
across populations. Here we propose a novel Bayesian PRS framework, xPred, which 
leverages GWAS summary statistics from multiple populations to boost the predictive 
power of PRS in under-represented populations. We also propose its extension, xPred- 
anno, to integrate functional annotations to upweight the genetic variants likely to be 
functional. Both xPred and xPred-anno employ a four-component mixture prior to model 
the effect sizes of genetic variants, where the genetic effects are coupled across 
populations via a shared proportion of causal SNPs. Through simulations and real data 
analyses on several quantitative traits and type 2 diabetes, we demonstrate that our 
approaches can substantially increase the accuracy of polygenic risk prediction and risk 
population stratification compared to the existing methods. 
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Genetic prediction of complex traits has great promise for disease prevention, monitoring, 
and treatment. The development of accurate risk prediction models is hindered by the 
wide diversity of genetic architecture across different traits, limited access to individual 
level data for training and parameter tuning, and the demand for computational resources. 
To overcome the limitations of the most existing methods that make explicit assumptions 
on the underlying genetic architecture and need a separate validation data set for 
parameter tuning, we develop a Summary-statistics based Dirichlet Process Regression 
method SDPR that does not need to tune parameters. In our implementation, we refine 
the commonly used likelihood assumption to deal with the discrepancy between summary 
statistics and external reference panel. Through simulations, we show that SDPR is 
adaptive to different genetic architectures and robust to heterogeneity of per SNP sample 
sizes. In real data analysis, we compared the performance of SDPR with 7 recently 
developed or current state of art methods (PRS-CS, SBayesR, LDpred, P+T, LDpred2, 
lassosum and DBSLMM) on 6 quantitative (height, BMI, HDL, LDL, total cholesterol and 
triglycerides) and 6 binary traits (coronary artery disease, breast cancer, IBD, type 2 
diabetes, schizophrenia and bipolar). SDPR achieved the best performance for 6 traits 
(height, BMI, HDL, LDL, total cholesterol, breast cancer), and top tier performance for 4 
additional traits (IBD, type 2 diabetes, schizophrenia, bipolar; within 0.003 of AUC 
difference compared with the top method). Furthermore, SDPR is able to fit the model in 
15 minutes when executed in parallel, significantly faster compared with 2-5 hours for 
PRS-CS, LDpred and LDpred2. Taken together, we believe that SDPR has the potential 
to be widely used given its competent performance on real traits, easiness to use and 
excellent computational efficiency. 
SDPR is freely available at https://github.com/eldronzhou/SDPR. 
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Predicting diagnostic variants in the CAGI6 SickKids challenge 
 
Junwoo Woo, Kyoungyeul Lee 
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Our mission at 3billion is to help end the diagnostic odyssey for genetic disease patients 
around the globe. Our method of prediction involves the use of ACMG Bayesian scores, 
semantic similarity scores, and scores generated using 3Cnet, a sequence-based deep 
neural network trained using clinical, common, and conserved mutation data. 
ACMG Bayesian scores are calculated using EVIDENCE, our in-house bioinformatics 
pipeline for variant annotation while semantic similarity scores quantify the relation 
between patient phenotypes and those of candidate diseases with known associations to 
patient variants. Variant sequences are passed through 3Cnet to generate predicted 
pathogenicity scores. We trained a supervised logistic regression model on our repository 
of in-house patient data, using the Bayesian, semantic, and 3Cnet scores of variants as 
features and clinically confirmed variants (interpreted in accordance with the ACMG 
guidelines) as labels. We internally evaluated the performance of our method using top-K 
recall at the variant level of resolution and observed that in many cases, confirmed 
variants were discovered at favorable, lower values of K. We anticipate that the integration 
of this method to 3billion’s current internal genetic testing workflow will, on average, 
shorten the time required per case of genetic testing. 
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Vicente A. Yépez1, Christian Mertes1,2,4, Nicholas H. Smith1, Ines F. Scheller1,3, Julien 
Gagneur1,2,3,4 
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Munich, Germany 
 
 
RNA sequencing has emerged as a complementary tool to DNA sequencing for rare 
disease diagnostics. However, gene prioritization methods integrating genotype, RNA-seq 
and phenotypes have been lacking. To address this need, the SickKids Genome Clinic 
released a CAGI 6 diagnostics challenge with nearly 80 genomes and RNA-seq samples1. 
We developed a gene prioritization model integrating variant annotations, mono-allelic 
expression, gene expression2 and splicing outliers3 (through our workflow DROP4), together 
with HPO-encoded phenotypes. The model is a gradient boosting machine (implemented 
using XGboost) trained on a cohort of 209 mitochondrial disease patients5 from which half 
are diagnosed. Our model prioritizes the causal gene first for almost half of the diagnosed 
cases, and among the top 5 in more than 70% of them. Application to the CAGI6 SickKids 
cohort revealed several promising candidates. Our approach and publicly available 
software6 can help find and prioritize candidate genes found by DNA and RNA sequencing 
and can be especially useful to reduce the burden of manual inspection in cohorts of 
hundreds of samples. 
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One major obstacle facing rare disease patients is simply obtaining a genetic diagnosis. 
The average “diagnostic odyssey” lasts more than five years, and over 60% of patients 
still lack a genetic diagnosis. The Rare Genomes Project (RGP) is a direct-to-participant 
research study on the utility of genome sequencing for rare disease diagnosis and gene 
discovery, led by genomics experts and clinicians at the Broad Institute of MIT and 
Harvard. Research subjects are consented for genomic sequencing and the sharing of 
their sequence and phenotype information with researchers working to understand the 
molecular causes of rare disease. In the RGP CAGI challenge, whole genome sequence 
and phenotype data from 30 RGP families were provided, consisting of both “solved” and 
“unsolved” cases. The challenge tasked participants with identifying the causative 
variant(s) in as many cases as possible. Participants submitted ranked causal variant 
predictions (limit 100 per proband, single or biallelic) with associated estimated probability 
of causal relationship values. Sixteen teams participated in the challenge, submitting 
variant predictions from a total of 52 different models. Model performance was determined 
by two independent methods and the mean rank determined those that were top-
performing. The first method calculated maximum F-measure based on the submitted 
estimated probability of causal relationship values, a harmonic mean between the 
precision and recall of causal variant(s) in the solved cases. The second method allocated 
points to the prioritization of causal variant(s) within the first five, 10, 20, 50, and 100 
ranked variants submitted for each proband in a weighted manner (100, 50, 25, 10, and 5 
points, respectively). The top performing teams were able to recall a significant fraction of 
causal variants (in up to 13/14 solved cases), while in the unsolved cases one de novo 
near splice variant was deemed diagnostic, two credible leads are undergoing functional 
validation, and six candidates are being pursued as potential novel disease genes by 
entry into MatchMaker Exchange. In one such example, RNA-sequencing is underway to 
confirm the functional consequence of a deep intronic indel in ASNS, identified in trans 
with a frameshift variant in an unsolved case with a strong phenotypic match to 
asparagine synthetase deficiency. The identification of further potentially diagnostic 
variants illustrates promotion of synergy between researchers with clinical and 
computational expertise as a means of advancing the field of clinical genome 
interpretation. 
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Background: 
The eVai platform (www.engenome.com) enables precise and early diagnosis of rare 
diseases and supports geneticists with interpretation of genomic variants. 

By combining Artificial Intelligence and International Guidelines, eVai classifies and 
prioritizes variants for pathogenicity, suggesting the related genetic diagnoses. 

Its ML-based approach was applied to Rare Genome Project (RGP) patients provided 
by the CAGI6 Challenge. 
Materials and methods: 
The eVai ML approach to suggest diagnoses was adapted to CAGI RGP data. 
Training and test VCF files were analyzed through eVai and dataset features considering 
variant pathogenicity, variant quality, family segregation and phenotypic similarity were 
computed for single or compound heterozygous variants. 

Different ML models were evaluated with a “Leave-one-proband-out” cross-validation on 
training set. 
Selected models were trained on the CAGI RGP training set and used to predict test set. 
Results: Among different models, two of them were selected according to their 
prioritization performances. Both models prioritize the causative variant in the first 
position for more than 74% of cases. Moreover, in more than 97% of cases, the causative 
variant was in the top 10 list for both models. 

 
Discussion: The eVai ML approach to suggest diagnoses goes beyond pathogenicity-
based variant classification and mimics the geneticist manual review of candidate 
variants, matching patient’s clinical phenotypes, family history and checking 
experimental data quality. 
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Applying Exomiser to the CAGI 6 Rare Genomes Project challenge 
 
Jules Jacobsen 
Queen Mary College London, London, UK 
 
 
The Exomiser is a free, open source Java application for filtering and prioritisation of variants likely 
to be causative of Mendelian rare disease. It has been developed as part of the Monarch Initiative 
(monarchinitiative.org) since 2012 and is widely used in diagnostic pipelines around the globe. 
 
The Exomiser uses patient phenotypic features encoded using the Human Phenotype Ontology 
(HPO) and a Variant Call Format (VCF) file of the patients exome / genome. It applies a variety of 
'fuzzy' phenotype profile matching algorithms to prioritise segregating and de novo filtered variants 
likely to be causative of the patient's phenotype. The patient phenotype profile matching is run 
over known human rare disease, mouse and zebrafish knockout models which enables 
prioritisation of variants both in known disease-causing genes and discovery of new gene-disease 
associations. 
 
For the Rare Genomes Project challenge, we ran Exomiser in various configurations (models) of 
varying degrees of permissiveness to allow detection of variants in known disease genes, 
incompletely penetrant, animal model and non-coding regions. The two most precise models were 
able to detect the diagnosed variant in the top 1, 3, and 10 prioritised variants in 31 (89%), 33 
(94%) and 35 (100%) of the Rare Genomes training data cases. 
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Family-based Filtering 
To choose the most suitable mode of inheritance for each case, we studied both the 
training set and the actual testing set for all possibilities while considering the ethnicity. 
Consequently, in some cases, we prioritized some mode of inheritance filters over 
others. We use ethnicity to prioritize a family filter based on recessive mode of 
inheritance when we suspect likely consanginuity (i.e., we use the amount of 
consanguinuity within an ethnic group as a prior when selecting the mode of inheritance 
filter to apply). For the family-based filtering, we utilized the recently published method 
Slivar [11]. The method explores practical guidelines for variant (SNP and INDEL) filtering 
and reports the expected number of candidates for de novo dominant, recessive, and 
autosomal dominant modes of inheritance. We evaluated different settings and 
configurations based on the family pedigrees. Using Slivar, for the trios or quads, and 
duos: we use segregating denovo, segregating recessive, and compound heterozygous 
compound-hets filtering. For the proband only cases: we used segregating dominant and 
segregating recessive filtering for the variants. 

 
Causal variants prediction 
After filtering variants, our approach for predicting the causative variant(s) is by 
combining two main sources of information; the first utilizes the genomic features and 
pathogenicity prediction using CADD [12], and the second is based on the phenotype 
annotations for the affected families combined with the ontology-based machine 
learning method DL2vec [3]. We made four submissions based on the different gene-
phenotype representations using DL2vec. We mainly utilize three types of gene 
annotation features for supervised learning as they perform best in our previous 
experiments [3]: Gene Ontology (GO) [2], Mammalian Phenotype Ontology (MP) [15] , 
and the Human Phenotype Ontology (HPO) [13]. Specifically, we obtain the 
annotations of human genes with functions and cellular locations encoded by the GO, 
and the phenotypes of their mouse orthologs from the Mouse Genome Informatics 
(MGI) database and characterized using the MP, and the phenotypes of the human 
genes using HPO. Furthermore, we obtain phenotype annotations of human diseases 
with the Human Phenotype Ontology (HPO), in addition to the phenotypes obtained 
from the training set. To combine the annotations using the different ontologies, we 
use the integrated PhenomeNET ontology [14]. 
We jointly embed the gene and disease, their ontology-based annotations, and the 
ontologies used in the annotations in a vector space. We generate embeddings 
individually using GO, MP, and HP annotations, and their union. We then use a 
pointwise learning-to-rank model to prioritize gene–disease pairs based on gene–
disease associations in the Online Mendelian Inheritance in Men (OMIM) database [1], 
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and the phenotypes in our training set. Our model is based on neural networks; given a 
pair of embedding vectors G and D as input, the model independently transforms the 
embeddings into a lower-dimensional representations using two fully-connected hidden 
layers, and then computes the inner product followed by a sigmoid function that outputs 
a value between 0 and 1, and which we use as the prediction score for an association 
between G and D. We combine DL2Vec predictions with CADD predictions, and use 
weighted prediction scores as the final predication score for the variants. 

 

 
 

Figure 1: Model Workflow 
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Gene panel sequencing analysis is widely used for identifying causative genetic variations 
and the genetic diagnosis of inherited disease. In the Critical Assessment of Genome 
Interpretation 6 (CAGI6) Intellectual Disability panel challenge, we proposed a novel 
method for identifying pathogenic variants, and performing the polygenic risk scores 
(PRS) to predict disease phenotypes. The Ensembl Variant Effect Predictor (VEP) tool 
and the precalculated REVEL scores were used for annotating the raw VCF files. For 
variants reported with multiple REVEL scores, we selected the highest score. Variants 
were filtered based on the following four criteria: (1) absent or with a MAF < 5% in 1000 
Genomes Project data, (2) not homozygous reference alleles, (3) present in only one 
sample, (4) protein-altering variants. The ClinVar databases, phenotype-specific 
Phenolyzer score, and REVEL score were used to prioritize variants. The variant reported 
as pathogenic/likely pathogenic in ClinVar or the top-ranked variant that combines the 
ranking of Phenolyzer score and REVEL score was identified as putative causative 
variants. The PRS is constructed using the effect sizes extracted from published GWAS 
summary statistics or derived from training dataset by logistic regression analysis. 
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Variant impact estimation using Evolutionary Action in the CAGI 6 Intellectual Disability 
Panel, SickKids6 and Rare Genomes Project challenges 
 
Amanda Williams 
Baylor College of Medicine 
 

The difficulty of identifying causal variants makes diagnosis and treatment hard. 
Computational methods can prioritize variants and could provide doctors with diagnosis 
and treatment options. CAGI aims to assess computational methods ability to assist in 
clinical settings. We used variant impact scores and allele frequency to address the 
Intellectual Disability Panel, Rare Genomes Project, and Sickkids6 challenges in CAGI6. 
Variant impact was estimated using the Evolutionary Action (EA) method, and allele 
frequency was estimated according to GnomAD, the UK Biobank, the test data sets, and 
the training data sets. We then investigated genes for genotype-to-phenotype 
relationships according to ClinVar, DisGeNet, Human Phenotype Ontology (HPO), and 
GeneCards. For the Rare Genomes Project and Sickkids6 challenge, we prioritized 
variants through a combination of variant impact, allele frequency, and genotype-to-
phenotype relationship. Using these features, we matched neurodevelopmental 
phenotypes to patients in the Intellectual Disability Panel. Overall, we indicated casual 
genes, driver variants, and matched phenotypes to patients.  
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Introduction: The degree to which genomic variants that affect splicing are responsible for 

disease-causing mutations remains unknown, and estimates of the fraction of disease causing 

mutations impacting splicing range from 10% to over 50%. A closely related problem is our ability 

to identify variants of unknown significance with impact on gene expression through splicing.  Over 

the years, methods have evolved from consensus methods, information content, maximum entropy 

and hidden Markov models, to deep neural networks. 

Methods: In the SplicingVUS challenge, participants were asked to predict splicing disruption from 

variants of unknown significance. We used direct application of the deep neural network SpliceAI, 

with and without supplementation by a detailed expert consideration of individual cases. For the 

first method, a threshold of 0.21 was selected based on the optimal accuracy of training data from 

the challenge (accuracy of 0.88). Variants with a maximum SpliceAI score of 0.21 or greater were 

assigned a classification of 1, indicating that splicing is altered relative to controls. The second 

method included a more in-depth multi-layered approach. Variant annotation was performed 

considering SpliceAI scores (threshold 0.21), gnomAD variant count, MaxEnt scores, 100 

vertebrate conservation score (UCSC) and CADD scores. Factors considered during variant 

classification included the assessment of mutations in the 5' splice site core and mutations that 

create AG dinucleotides upstream of a 3' splice site. Missense mutations with a high CADD score 

were assumed to affect protein function rather than splicing. 

Results, Conclusions and Next Steps: In the future, we will attempt to formalize domain 

knowledge by applying various machine learning methods to this data set and to additional data 

sets. 
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Assessing the CAGI 6 Sherloc challenge 
Rachel Hovde, Peter Combs, Yuya Kobayashi  
 

Invitae is a large-scale medical genetic testing company with clinical and sequence data 
from over 3 million patients.  This rich dataset allows our internal researchers to interpret 
the clinical impact of previously unknown variants with high confidence using a semi-
quantitative system called Sherloc. We regularly submit genetic variant interpretations to 
ClinVar, but this year, we held back a set of ~70 thousand newly-interpreted variants to 
use as a test set for the Sherloc Clinical Prediction Challenge.  We invited participants to 
predict the clinical impact of each variant in the test set, as well as a score indicating their 
confidence in that prediction, and we evaluated contestants based on how closely they 
matched our own high-confidence interpretations. 
 

Evaluation metrics were developed to assess clinical applicability of models, as well as 
scientific contribution.  There was a broad range of performance among the participants, 
but several methods achieved high recall and precision, showing potential clinical 
applicability.   Gradient-boosted trees were the most popular method, and both winning 
teams used this algorithm. 
 

Teams were given the opportunity to specialize in biologically meaningful subcategories of 
variants, and there were teams that seemed to have particular insight into missense 
variants and intronic inDels. In general, for variants that were hardest for teams to call , 
our prediction was based on private clinical patient data and other highly manual 
analyses. 
 

We have been developing a number of internal software tools for securely sharing models 
and for retraining and evaluating them over time.  We hope to share these in future CAGI 
competitions. 
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Predicting the pathogenicity of genetic variants has always been a challenge in genomics. 

However, existing methods usually only focus on certain kinds of mutations or can not 

make accurate predictions at a genome-wide scale. Here, we reported a novel model, 

FASVAR, which could be applied to single nucleotide variants (SNVs) and short indels in 

coding and non-coding regions. FASVAR incorporates a variety of features, including 

gene annotation, splicing, conservation scores, transcription factor binding, chromatin 

accessibility, and histone marks. For coding variants, we additionally compiled protein 

features based on multiple sequence alignment (MSA) and predicted disorder. 

Considering that these features may have distinct contributions to prioritizing the variants 

of different types, we trained separate models for SNVs and indels in coding and non-

coding regions. Then we built an ensemble model based on the separated models. To 

avoid overfitting, we split the training data into five folds by chromosomes to adopt the 

cross-validation strategy for training and fine-tuning the model. Our model outperforms 

state-of-the-art methods on independent test samples released by the Clinvar database 

recently. The analysis of feature importance suggests that MSA-derived features and RNA 

splicing features are the most important for coding and non-coding variants, respectively. 

Meanwhile, conservation scores and histone marks make critical contributions to the 

predictions for all kinds of variations. Notably, FASVAR significantly improves the 

predictions for non-coding SNVs, which may facilitate the study of non-coding regions. 
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Quantification of genotype-phenotype relationships in Pompe disease: a 

patient-derived model predicting age of onset, disease severity and 
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Reet Mishra1, Zhiqiang Hu1, Dona Kanavy, Jennifer L. Goldstein, Deeksha S. Bali, Yuanbin 
Ru, G. Karen Yu, Jonathan H. LeBowitz, Wyatt T. Clark, Constantina Bakolitsa 
 

 
Pompe disease (PD) is a rare autosomal recessive disorder caused by acid -glucosidase 

(GAA) pathogenic variants. Two different clinical forms have been described, depending 

on the age of onset: infantile (IOPD, <1 year of age) and late (LOPD, juvenile or adult). 

Early diagnosis of PD is critical, and initiation of enzyme replacement therapy can 

improve motor and respiratory function as well as survival. However, several factors can 

complicate and delay diagnosis, especially for LOPD, from PD's broad clinical spectrum 

and overlap with many other neuromuscular disorders, to variable diagnostic 

approaches in different countries, insufficient awareness of PD clinical manifestations, 

and a large number of GAA variants of unknown significance. 

 
We generated the largest publicly available PD database, including the genotypes (two 

causal variants) and disease severity (infantile, juvenile, or adult) for 1,750 patients. 

Integrative analysis of variants observed in IOPD and LOPD patients and their gnomAD 

frequencies suggested that people with two less severe variants could be healthy. For 

example, most people with homozygous -32-13T>G variants, the top causal variants of 

PD, do not develop PD in their lifetime. This challenges the binary annotation of 

pathogenicity (pathogenic or benign) in popular variant impact databases, such as 

ClinVar or HGMD. We built a linear model with the GAA enzyme activity as an 

intermediate, accurately predicting the disease severity from a patient’s genotype. An 

independent test suggests the model can accurately distinguish between IOPD and 

LOPD patients with an AUC of 0.95. Our prediction provides finer gradations of variants’ 

pathogenicity. To extend our model to unobserved pathogenic variants, we 

experimentally measured the in vitro enzyme activities for 357 low-frequency GAA 

variants in ExAC database with unknown significance and applied a clinical evaluation 

to determine their pathogenicity. Our observations strongly suggest that PD does not 

follow a classic autosomal-recessive model. We propose a refined model integrating 

genotype pathogenicity and other genetic, environmental and age-associated modifiers. 

 
Our analysis can improve future diagnostic screening for PD, and could be similarly 

applied to other monogenic diseases characterized by graded severity. 
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